varing the positions and isotropic vibrational amplitudes of the C, \overline{O} , and Fe atoms led to $R = 0.089$. Six further cycles of least-squares refinement of the atomic parameters with anisotropic vibrational amplitudes for the C, O, and Fe atoms converged to $R = 0.068$. A difference Fourier map calculated at this stage revealed peaks of density appropriate to all hydrogen atoms. Keeping the vibrational amplitudes for the hydrogens fixed $(B(H))$ $B(C) + 1.0$ Å)² and refining with anisotropic *U*'s for all the C, 0, and Fe atoms, we obtained a final *R* of **0.033.** The atomic scattering factors were taken from the literature.¹²

All the calculations were performed on the FACOM M-200 computer in the computer center of Kyushu University with the

(12) "International **Tables for X-ray Crystallography"; Kynoch Press: Birmingham, England, 1974; Vol. 4, pp 72-98.**

Universal Crystallographic Computation Program System UNICS **11.13**

Registry **No. 1, 17346-16-6; 3, 36343-88-1; 5, 78149-25-4; 6,** 78128-46-8; 21, 78109-55-4; 22, 78109-56-5; $Fe₂(CO)₉$, 15321-51-4. **78109-52-1; 10, 62515-93-9; 11, 78184-56-2; 14, 78109-53-2; 15, 78149-18-5; 16, 78109-54-3; 17, 12193-69-0; 19, 78128-46-7; 20,**

Supplementary Material Available: Selected torsion angles (Table 111), atomic parameters (Table IV), and coordinates for hydrogen atoms (Table V) **(3 pages).** Ordering information is given on any current masthead page.

(13) (a) Salyai, *T.;* **Iwaeaki,** J.; **Watanabe, Y.; Kobayashi, K.; Bando, Y.; Nakamichi, Y.** *Rzkagaku Kenkywho Hokoku* **1974,50, 75-91. (b) Kawano, S.** *Koho, Comput. Cent. Kyushu Uniu.* **1980, 13,39-50.**

Studies of Tertiary Amine Oxides. 4. Thermal Rearrangement of N-Aryl Amine Oxides to 0-Arylhydroxylamines

Abdul-Hussain Khuthier,* Abdul-Khalik S. Al-Kazzaz, Jasim M. A. Al-Rawi, and Mohammed A. Al-Iraqi

Department of Chemistry, College of Science, University of Mosul, Mosul, Iraq

Received February 18, 1981

Substituted N-aryl cyclic amine oxides undergo novel thermal rearrangement to 0-arylhydroxylamines. Electron-withdrawing substituents are essential for the rearrangement and must be ortho or para relative to the **+N-0** function. The mechanism of the rearrangement is best described by an intramolecular cyclic process. Kinetic results are in agreement with the cyclic process but are inconsistent with a homolytic dissociation-recombination mechanism.

Tertiary amine N-oxides **(1)** are a class of organic compounds that have received considerable attention in part tabolism of tertiary amines and in part because of the interesting thermal rearrangement they undergo to the

$$
R_1R_2R_3N \rightarrow 0 \rightarrow R_1R_2NOR_3 \qquad (1) \qquad \qquad \underbrace{\qquad \qquad}_{0}
$$

Meisenheimer et al. 3 were the first to recognize this reaction, which then became known **as** the Meisenheimer rearrangement. However, with these N-oxides having a β -hydrogen atom, an elimination reaction,⁴ often referred to **as** the Cope elimination, might take place, yielding an olefin. For such compounds, elimination and isomerization are often found to be competitive, and N,N-diethylbenzylamine N-oxide **(3),** for example, on being heated afforded **N-ethyl-N-benzylhydroxylamine,** ethylene, and **0-benzyl-NJV-diethylhydroxylamine (4)** (Scheme **I).**

The type of group which could migrate in the Meisenheimer rearrangement $(R_3 \text{ in eq } 1)$ is rather closely defined. The groups that are known to show a tendency for migration from N to O include allyl,⁵ benzyl,⁶⁻⁹ neopentyl,¹⁰

tetrachloropyridyl,¹¹ and homoadamantyl.¹² We have recently¹³ reported on the migration of a benzene nucleus from N to 0 in substituted dimethylaniline oxides. This paper describes the scope and limitations of this type of migration.

Results and Discussion

Syntheses. The tertiary amines **5** were prepared by reaction of the appropriate secondary amine and *0-* or

⁽¹⁾ R. Kuntzman, A. Phillips, I. **Tsai, A. Klutch, and** J. J. **Bums,** *J.* Pharmacol. Exp. Ther., 155, 337 (1966); D. M. Ziegler and F. H. Pettit,
Biochemistry, 5, 2932 (1966); J. R. Gillette Adv. Pharmacol., 4, 219 (1966).
(2) C. C. J. Culvenor, Rev. Pure Appl. Chem., 3, 84 (1953).
(3) J. Meisc

⁽⁵⁾ R. F. Kleinschmidt and A. C. Cope, *J.* **Am.** *Chem. SOC.,* **66, 1929 (6) U. SchBllkopf, M. Patach, and H. Schafer,** *Tetrahedron Lett.,* **2515** (1944)

^{(1964).}

⁽⁷⁾ *G. P.* **Shulman, P. men, and M.** Connor, *Can. J. Chem.,* **43,3459 (1965).**

⁽⁸⁾ U. Schdlkopf, U. Ludwing, M. Patach, and W. Franken, *Justus* **(9) J. P. Lorand, R.** W. **Grant, and R.** W. **Wallace,** *J. Org. Chem.,* **38,** *Liebigs Ann. Chem., 770,* **703 (1967).**

^{1813, (1973).}

⁽¹⁰⁾ J. I. Brauman and W. A. Sanderson, *Tetrahedron*, 23, 37, (1967).
(11) S. M. Roberts and H. Suschitzky, J. Chem. Soc. C, 1537 (1968).
(12) B. L. Adams and P. Kovacic, J. Am. Chem. Soc., 96, 7014 (1974).
(13) A.-H. Khu

Chem. Commun. **1001 (1976).**

Table I. Properties of the Tertiary Amines 5^a

	yield,	mp, $^{\circ}C$ (lit. value)	¹ H NMR, ^d δ		
compd	%	[recryst solvent]	λ_{\max} , b nm (ϵ_{\max})	aryl	CH ₃
5a	100	$103 - 104 (105)^{16}$ [EtOH]	390 (21 676), 232 (8250)	8.1, 6.8 c ($J = 9.7$)	
5b	92	$151 - 152(152 - 153)^{16}$ [HOAc]	375 (19 057), 238 (7789)	8.2, 6.9 $^{\circ}$ ($J = 9.7$)	
őс	95	$78 - 80(81)^{17}$ $[n \cdot \text{hexane}]$	250 (14 252)	$7.9 - 6.87$ (m, 4 H)	
5d	82	$39 - 40(40 - 41)^{18}$ [benzene]		$7.8 - 6.9$ (m, 4 H)	
ōе	98	62-64 (59.5-60.5) ¹⁶ [EtOH]	390 (20 940), 237 (7161)	8.08, 6.76c $(J = 9.7)$	1.2 (d, $J = 6.6$)
5f	90	$20 - 21$	250 (13 897)	$7.7 - 6.9$ (m, 4 H)	0.84 (d, $J = 6.6$)
5g	97	63-65 $(64-64.5)^{16}$	388 (21 427), 237 (8707)	8.1, 6.8 ^c ($J = 9.7$)	1.0 (d, $J = 6.6$)
$5\bar{h}$	96		252 (14 362)	$7.8 - 6.8$ (m, 4 H)	$0.9(d, J = 6.6)$
5i	94	$88 - 90 (89.9 - 90.3)^{16}$ [EtOH]	389 (20 973), 237 (7887)	8.1, 6.8 ^c ($J = 9.7$)	1.0 (d, $J = 6.6$)
5j	92	44-46 [EtOH]	252 (13 525)	$7.8 - 6.8$ (m, 4 H)	1.0 (d, $J = 6.6$)

^a Satisfactory analytical data were obtained for all new compounds. ^b Solvent is dioxane. ^c Appears as an AB quartet; the higher value corresponds to the two protons ortho to $NO₂$, and the lower value corresponds to the protons ortho to N. *J* values are given in hertz.

Table II. Properties of the Tertiary Amine Oxides^a 6

^a Satisfactory analytical data were obtained for all compounds. $\frac{b}{c}$ Solvent is dioxane. $\frac{c}{c}$ AB quartet. $\frac{d}{c}$ Two doublets; relative intensities 1:1.4 at 25 "C. **e** Two doublets; relative intensities 3:l at 25 "C. J values are given in hertz.

p-nitrofluorobenzene (Table I). The action of m-chloroperbenzoic acid on the tertiary amines **5** produced the N-oxides **6,** but in low yields. Oxidation of **5** with performic acid, however, produced the crystalline N-oxides **6** in good yields (Table 11). These N-oxides are hygroscopic and thus were stored **as** their picrates or hydrochlorides. However, good spectral data (IR, NMR, UV) of the free N-oxides were obtained to permit their full characterization. In the **'H** NMR spectra, a considerable downfield shift for the aromatic and the alkyl protons relative to the corresponding amines is clearly noticed. Such a downfield shift is expected on introduction of the polar $N\rightarrow 0$ group in the molecule. For the p-nitro Noxides **(6a,b,g),** the aromatic protons appeared **as** a single line about **6** 8 in contrast to the same protons in the corresponding amines **(5a,b,g)** which appeared as an AB quartet. Evidently, the deshielding influences of the $N\rightarrow O$ function and the $NO₂$ group are equal, thus making J/δ for the aromatic ring protons so large that the spectrum looked like a single-line A₂ system. This is one of the cases of the so called "deceptively simple AB spectra".¹⁴ On the other hand, the aromatic protons of the N-oxides **6e** and **6i** appeared **as** an *AB* quartet with coupling constants of 9 Hz. It is of interest to note that the methyl protons in **6e** and **6f** appeared as two doublets (Table 11) in contrast to the same protons in the other C-methyl N-oxides Scheme II

which are indicated by one doublet. The appearance **of** two doublets for the methyl group in **6e** and **6f** could not be due to **axial** and **equatorial** methyl signals **owing** to slow

⁽¹⁴⁾ L. M. Jackman and S. Sternhell "Applications of Nuclear Mag- netic **Resonance** Spectroscopy in **Organic** Chemiatry", 2nd *ed.,* Pergamon Press, Elmeford, NY, 1969, p **136.**

Table III. Properties of *O*-Arylhydroxylamines^{*a*} 7

Satisfactory analytical data were obtained for all compounds. $\,$ b Reaction time is 3 h for the p-nitro compounds and 12 $\,$ h for the o-nitro compounds. ϵ Solvent is dioxane. ϵ AB quartet.

ring inversion or to mixtures of isomers (methyl cis or trans to phenyl) since similar effects are absent in the 4-methyl compounds. It is most likely due to the steric hindrance to rotation about Ph-N bond in addition to the chirality in the piperidine ring. Both of these factors appear to influence the environment of the methyl group in **6e** and **6f.** Further work to resolve this problem is in progress.

The amine oxides **6** undergo thermal rearrangement to the O-arylhydroxylamines **7** in high yields when heated in dioxane (Table 111, Scheme 11). The structure of the rearrangement products was established by IR, NMR, elemental analysis, and hydrolysis. Thus treatment of **7** with 30% hydrochloric acid afforded the corresponding substituted phenols having identical properties with those of reference samples.

The rearrangement $6 \rightarrow 7$ is reminiscent of the Meisenheimer isomerization of tertiary N-oxides. The electron deficiency of the aryl carbon (directly attached to the N-O function) brought about by the $NO₂$ and the N-oxide groups provides the impetus for this novel rearrangement. In agreement with this hypothesis, the presence of an electron-donating group (e.g., CH₃) instead of NO₂ prevents the hydroxylamine formation, and such N-oxides are thermally stable.

The mechanism of the rearrangement is best described by an intramolecular cyclic process $(S_Ni, Scheme\ III)$ rather than a homolytic process as suggested for Meisenheimer transformation in other systems. The benzyl group migrates from N to 0 via radical intermediates during re-

Table IV. Rearrangement of 6 in Dioxane

compd	temp. $^{\circ}C$	$10^{4}k$, a s ⁻¹	ΔH^{\ddagger} . kcal/mol	ΔS^{\ddagger} . eu
6a	55.6 61.9 68.0 73.9 79.7	4.26 ± 0.15 7.01 ± 0.29 14.32 ± 0.52 25.13 ± 1.84 42.15 ± 2.2	21.8 ± 0.6	-8 ± 1.8
6b	65.3 70.1 74.3 80.2 85.2	1.55 ± 0.08 2.91 ± 0.16 3.87 ± 0.42 6.70 ± 0.45 13.21 ± 0.83	$24.1 \pm 0.92 -5 \pm 2.6$	
6c	78.6 83.1 85.8 88.4	0.81 ± 0.05 1.42 ± 0.06 1.93 ± 0.07 2.53 ± 0.11	$26.9 \pm 0.52 - 1 \pm 1.4$	

^a Each value is the average of at least three consistent runs.

arrangement of benzyldimethylamine oxide⁷ and N benzyl-N-methylaniline N -oxide.^{6,8,9} Neopentyl¹⁰ and homoadamantyl¹² groups also migrate via free radicals during thermolysis of their N-oxides.

Kinetics. The rate of rearrangement of **6a-c** was measured in dioxane at four or five temperatures by following the disappearance of the N-oxide or the appearance of the rearrangement product **as** a function of time by *UV* techniques. The reaction is followed up to 75-90% completion, and in every case good first-order kinetics were observed. Table IV describes the results of the kinetic studies.

The energy of activation for the isomerization $6 \rightarrow 7$ in dioxane is about 10 kcal smaller than the energy of activation found for the isomerization of N-benzyl-Nmethylaniline N -oxide (35 kcal/mol) as reported by Schöllkopf⁸ and is consistent with greater ease of rearranging the N-oxides **6.** The entropy change associated Schöllkopf⁸ and is consistent with greater ease of rear-
ranging the N-oxides 6. The entropy change associated
with the isomerization $6 \rightarrow 7$ deserves further comment.
The narmal offect of converting the dipoler N origi The normal effect of converting the dipolar N-oxide to the neutral substituted hydroxylamine should lead to a positive change in entropy. If the aryl group in **6** migrated through a cyclic transition state (Scheme 111), a negative entropy of activation would be expected. Hence, a combination of the two effects, the removal of the dipole and a cyclic transition state, might lead to a small positive or even negative entropy change **as** found in the present study. In fact, the negative entropy of activation for the rearregative entropy change as found in the present study. In fact, the negative entropy of activation for the rear-
rangement $6 \rightarrow 7$, although small, indicates a considerable
decrease in randomness in the activited complex decrease in randomness in the activated complex in agreement with the proposed mechanism (Scheme III). *On* the other hand, Schöllkopf et al.⁸ found that the rearrangement of **N-benzyl-N-methylaniline** N-oxide in methanol is associated with a positive ΔS^* (+33 eu), and

this was taken to indicate a cleavage-recombination mechanism (eq **2).**

Similar results were obtained by Shulman et al.' for the rearrangement of benzyldimethylamine oxide in which ΔS^* was **+8** eu. The negative entropy of activation found in this study in addition to the great ease of rearrangement is strong evidence against dissociation into radicals (eq **3)**

$$
O_2N-\left(\frac{1}{\sqrt{2}}\right)^2\sqrt{2}x\rightarrow O_2N-\left(\frac{1}{\sqrt{2}}\right)^2+\left(\frac{3}{\sqrt{2}}\right)^2x^2\rightarrow O_2N-\left(\frac{1}{\sqrt{2}}\right)^2x^2\rightarrow O_2N-\left(\frac{1}{\sqrt{2
$$

and more in support of an intramolecular cyclic process (Scheme 111). Moreover, phenyl radicals are generally much less stable than benzyl radicals. Further justification for the intramolecularity **of** the rearrangement comes from the observation that mixed rearrangement of **6b** and **6c** produced only the hydroxylamines **7b** and **7c** with no crossover products **as** shown by thin-layer chromatographic analysis.

It is shown, from the kinetic results, that a simple proportionality between ΔH^* and ΔS^* exists for the rearrangement of **6a-c** according to the mathematical expression¹⁵ shown in eq 4, where δ is an operator and β is

$$
\delta \Delta H^* = \beta \delta \Delta S^* \tag{4}
$$

the isokinetic temperature. Table IV clearly indicates a linear relationship between ΔH^* and ΔS^* for rearrangement of **6a-c.** Such correlation indicates that these quantities are caused by a change in the strength of the interaction involving just a single mechanism.

The position of the electron-withdrawing group on the benzene nucleus is of utmost importance. It must be **ortho** or para relative to the **3N-0** function, since only in these positions can the NO₂ group delocalize the incoming negative charge carried by the attacking oxygen (Scheme III). The more effective the delocalization of the negative charge is, the greater the ease **of** the rearrangement. This was shown with substituted N , N -dimethylaniline N oxides¹³ (eq 5). The migration of the benzene nucleus

$$
\sqrt{\sum_{N\text{Me}_2}} \xrightarrow{\beta} \sqrt{\sum_{N\text{Me}_2}} \xrightarrow{\Delta} \sqrt{\sum_{N\text{Me}_2}} \sqrt{1 - \sum_{N\text{Me}_2}} \tag{5}
$$

$$
Y = p\text{-NO}_2, o\text{-NO}_2, p\text{-CN}, p\text{-PhCO}
$$

takes place only when the substituent is ortho or para relative to $\geq N$ -O. With the *m*-nitro compound (eq 5, Y $r = m-NO₂$) no isomerization could be detected, and the N-oxide was recovered uncharged quantitatively.

It is important to stress further the effect of the electron-withdrawing substituents on the course of the rearrangement since unsubstituted N -oxide (eq $5, Y = H$) does not undergo rearrangement even at elevated temperature, and N-oxides with electron-donating substituents (eq *5,* $Y = CH₃$, Cl) on heating show no tendency to undergo rearrangement.

Experimental Section

Instrumentation. Nuclear magnetic resonance *(NMR)* spectra were recorded for identification purposes in deuteriochloroform solutions on Varian A-60D and Bruker WH90 spectrometers. Chemical shifts are expressed in **parts** per million *(8)* with tetramethybilane as the internal marker. Ultraviolet spectra were recorded on a Pye-Unicam SP-1800 spectrophotometer. Melting points were determined with a Gallenkamp apparatus and are uncorrected.

(A) General Procedure for Preparation of the Tertiary Amines. A mixture of p-nitrofluorobenzene or o-nitrofluorobenzene (0.094 mol) and the appropriate secondary amine (0.282 mol) in dimethyl sulfoxide (50 mL) was stirred for 24-90 h at 50-100 "C. The tertiary amine was precipitated by the addition of water and recrystallized from the appropriate solvent (Table

I). **(B) General Procedure for Preparation of Tertiary Amine Oxides.** To **an** ice-cooled solution of the appropriate amine (0.025 mol) in 50-100 **mL** of 98% formic acid was added 17.5 **mL** of 30% hydrogen peroxide slowly. The reaction mixture was stirred for 12-36 h at room temperatur. The formic acid was neutralized with solid anhydrous sodium carbonate with cooling and stirring followed by extraction with four 150-mL portions of chloroform. The combined chloroform extracts were evaporated in vacuo, and the resulting N-oxide was washed with dry ether until the ether was no longer colored. The crude product was purified by **column** released by elution with methanol-chloroform (1:3) and recrystallized from ethanol-ether. The ether washings from oxidation of the amine *5a* were combined and the resulting yellow semisolid was chromatographed on alumina with 1:l chloroform-petroleum ether as eluant, yielding 25% of the hydroxylamine **7a.** The appearance of rearrangement products was also observed during oxidation of the p-nitrophenylamines **5b,e,g,i** in a yield between 10% and 30%. The N-oxide hydrochlorides were prepared by passing dry HC1 gas into a solution of the N-oxide in chloroform to the point of turbidity. Refrigeration produced the hydrochlorides (6-HC1) which were recrystallized from ethanol-ether (Table 11).

(C) General Procedure for the Rearrangement of the N-Oxides. A suspension of the amine oxide (1.5 g) in *dry* dioxane (70 **mL)** was heated at reflux with constant stirring for 3 h (p-nitro compounds) or 12 h (o-nitro compounds). After the mixture cooled, the solvent was stripped off, and the semisolid product was chromatographed on neutral alumina with chloroform-petroleum ether **as** the eluent, giving the 0-arylhydroxylamines **7** (Table 111).

Hydrolysis of the 0-Arylhydroxylamines 7. A known weight of the hydroxylamine **7** was refluxed for 2 h in 3 equiv of 30% HC1. The reaction mixture was extracted with ether. The combined ethereal extracts were dried (K_2CO_3) , and the solvent was evaporated. The pale yellow solid was characterized **as** onitrophenol (mp $42-44$ °C) or p-nitrophenol (mp 113-114 °C) by comparison with authentic samples (mixture melting point, IR,

Kinetic Measurements. Reaction rates were determined spectrophotometrically by noticing the absorbance at λ_{max} of the *N*-oxide 6 or the product 7 as a function of time. Runs were carried out in triplicate to 70-90% completion at four or five temperatures. A stream of water at constant temperature was circulated from a thermostat through the jacket of the cell house of the UV spectrophotometer (Pye-Unicam Sp 1800 with a maintained constant within ± 0.2 °C. A stock solution was obtained by dissolving 0.01 g of a freshly prepared amine oxide in 10 mL of *dry* dioxane. A 0.2-0.6-mL sample of this solution was diluted with a thermostated solvent in a 10-mL volumetric flask

⁽¹⁵⁾ J. E. Leffler, *J. Org. Chem.,* **31, 533 (1966).**

⁽¹⁶⁾ H. Suhr, *Justus Liebigs Ann. Chem.,* **689, 109-117 (1965). (17) M. Seikel,** *J. Am. Chem.* **SOC.,** *62,* **750 (1940).**

⁽¹⁸⁾ C. B. Kremer, M. Meltaner, and **L. Greenstein,** *J. Am. Chem.* **SOC., 61,2552 (1939).**

to obtain a $(1-6) \times 10^{-4}$ M solution of the amine oxide. Measurement of absorbance at λ_{max} for the N-oxide or the rearrangement product began immediately.

Reaction rate constants were calculated from the slope of In $(A, -A_n)$ vs. time for experiments in which the rate of the disappearance of the N-oxide was followed or from $\ln (A_n - A_t)$ vs. time in cases where the rate of product formation was followed. In all cases the least-squares plots of log $(A_t - A_\infty)$ or log $(A_\infty A_t$) vs. time were linear. An Arrhenius plot of $\ln k$ vs. $1/T$ gives the energy of activation **and** the frequency factor from which the entropy of activation could be calculated by using eq 6 and 7.

$$
\ln k - \ln A = E_a / RT \tag{6}
$$

$$
\ln A = \ln (ekT/h) + \Delta S^*/R \tag{7}
$$

Least squares plots of $\ln k$ vs. $1/T$ for rearrangement of $6a-c$ were linear.

Crossover Experiment. A mixture of 6b and *6c* (0.5 g of each) was dissolved in dioxane and heated at reflux (100 "C) for 3 h (over 3 half-lives of 6c). The solvent was stripped off, and the resulting residue was analyzed by thin-layer chromatography and showed only two spots corresponding to 7b and 7c: *R,* (25% benzene-75% petroleum ether 80-100 "C) of **7b,** 0.953; *Rf* of 7c, 0.869; authentic **7b,** *R,* 0.957; authentic 7c, *R,* 0.871.

Registry No. 5a, 6574-15-8; 5b, 10389-51-2; 5c, 15822-77-2; 5d, 5320-98-9; 5e, 15822-71-6; 5f, 15822-78-3; 5g, 78019-75-7; 5h, 78019- 76-8; 5i, 78019-77-9; 5j, 78019-78-0; 6a, 40832-54-0; 6a-HCl, 78019- 79-1; 6b, 40832-53-9; 6b picrate, 78019-80-4; 6b.HC1, 78019-81-5; 6c, 54399-43-8; 6ceHC1, 78019-82-6; 6d, 78019-83-7; 6d picrate, 78019- 84-8; 6e, 78019-85-9; 6e-HCl, 78019-86-0; 6f, 78019-87-1; 6f-HCl, 6heHC1, 78019-92-8; 6i, 78019-93-9; 6i.HC1, 78019-94-0; 6j, 78019- 95-1; 6j-HCl, 78019-96-2; 7a, 78039-75-5; 7b, 78019-97-3; 7c, 78019-98-4; 7d, 78019-99-5; 7e, 78020-00-5; **7f,** 78020-01-6; 7g, 78020-02-7; 7h, 78039-76-6; 7i, 78020-03-8; 7j, 78039-77-7; piperidine, 110-89-4; morpholine, 110-91-8; 2-methylpiperidine, 109-05-7; 3-methylpiperidine, 626-56-2; 4-methylpiperidine, 626-58-4; p-nitrofluorobenzene, 350-46-9; o-nitrofluorobenzene, 1493-27-2. 78019-88-2; 6g, 78019-89-3; 6eHC1, 78019-90-6; 6h, 78019-91-7;

Thiol-Oxygen Cooxidation Reactions of Cyclopentene, *cis-* **and trans-But-2-ene, Norbornene, and Norbornadiene**

Athelstan L. J. Beckwith* and Rudolf D. Wagner

Organic Chemistry Department, University of Adelaide, Adelaide, Australia, 5000

Received March 2, 1981

Thiol-oxygen cooxidation (TOCO) of olefins, followed by reduction of the initially formed hydroperoxides with triphenylphosphine, affords β -hydroxy sulfides in moderate to good yields. The structures of the major products from *cis-* and *trans-but-2-ene and from cyclopentene indicate that coupling of the intermediate* β *-thioalkyl* radicals with oxygen occurs mainly anti to the sulfur substituent but proceeds too slowly to compete effectively with internal rotation about the C_{α} -C_β bond. TOCO reactions of aromatic thiols with norbornene involve preferential exo addition of arylthio radicals to the double bond followed by coupling with oxygen in both exo the exo/endo ratio is sensitive to the nature of the thiol. TOCO reactions of norbornadiene afford, inter alia, hydroxy sulfides containing the tricyclene nucleus.

Thiol-oxygen cooxidation $(TOCO)$ reactions^{1,2} of olefins and reactive arenes afford convenient and efficient routes to hydroperoxy sulfides **or** hydroperoxy thioesters and compounds derived therefrom such **as** hydroxy sulfoxides,2 aryl thioethers and thioesters, $³$ and dihydroarene bis-</sup> $(thioethers).³ Notable features of TOCO reactions, which$ can be applied to the preparation of useful synthons,⁴⁻⁶ are their susceptibility to initiation by free-radical precursors, their propensity to rapidly afford high yields of products, and their relative freedom from side reactions.

These and other features of TOCO reactions are consistent with the free-radical mechanism first enunciated

by Kharasch. 7 It involves three chain-propagation steps. In the first (eq l), addition of thiyl radicals proceeds regioselectively at the less substituted terminus of an olefinic bond, or, in the case of arenes, to a position of high free valence? The regioselectivity **of** the addition is consistent both with the steric effects of substituents on radical **re-** $\arctan^{8,9}$ and with their expected polar effects⁹ on attack by electrophilic species.¹⁰ Rate constants for step 1 are available from studies of free-radical additions of thiols and olefins;¹¹ typical values of k_1 lie in the range 10^4 - 10^7 M^{-1} s⁻¹. Recent determinations¹² give values of 2.7 \times 10⁵ and 2×10^8 s⁻¹ for k_{-1} in reactions involving elimination of BuS. and PhS. respectively¹³ (eq 1-3).

The second propagation step (eq **2)** is expected to be very fast. Although rate constants have not been precisely

- (7) Kharasch, M. S.; Nudenberg, W.; Mantell, G. J. *J. Org. Chem.* **1951, 16, 524.**
- **(8)** Beckwith, A. L. J.; Easton, C. J.; Serelis, A. K. J. *Chem.* SOC., **(9)** Tedder, J. M.; Walton, J. C. *Acc. Chem.* Res. **1976, 9, 183;** Adu. *Chem. Commun.* **1980,482.**

⁽¹⁾ For reviews of thiol-oxygen cooxidation reactions see: (a) Kellogg, R. M. "Methods in Free-Radical Chemistry"; Huyser, E. S., Ed.; Marcel Dekker: New York, 1969; Vol. 2, p 1. (b) Oswald, A. A.; Wallace, T. J. "Organic **Sulfur** Compounds"; Kharasch, N., Meyers, C. **Y.,** Eds.; Per-gamon: Oxford, **1966; Vol. 2,** p **224.** For a resume of more recent literature see ref **2.**

⁽²⁾ Szmant, H. H.; **Mata,** A. J.; Namis, A. J.; Panthananickal, A. M. *Tetrahedron* **1976,32,2665.**

retrumeuron 1316, 32, 2003.
16, 845; J. Chem. 1964, 17, 109; 1963, 16, 845; J. Chem. 1964, 17, 109; 1963, 16, 845; J. Chem. Soc. 1961, 1304. Benati, L.; Camaggi, C. M.; Zanardi, G. J. Org. Chem. 1975, 40, 966.

⁽⁴⁾ **Iriuchijima, S.; Maniwa, K.; Sakakibara, T.; Tsuchihashi, G.** *J. Org.**Chem.* **1974**, 39, 1170. Iriuchijima, S.; Maniwa, K.; Tsuchihashi, G. *J. Am. Chem. Soc.* **1974,96,4280.** Szmant, H. H.; **Manjundiah,** R. *J. Org. Chem.* 1978, 43, 1835.

(5) Nederlof, P. J. R.; Moolenaar, M. J.; de Waard, E. R.; Huisman,

⁽⁵⁾ Nederlof, P. J. R.; Moolenaar, M. J.; de Waard, E. R.; Huisman, H. 0. *Tetrahedron* Lett. **1976, 3175. (6)** Nederlof, P. J. R.; Moolenaar, M. J.; de Waard, E. R.; Huisman,

H. 0. *Tetrahedron* **1978,** *34,* **2205.** Akkerman, J. M.; de Koning, H.; Huisman, H. 0. J. *Chem. SOC., Perkin Trans.* **1 1979, 2124.**

⁽¹⁰⁾ Church, D. **F.;** Gleicher, G. J. *J.* Org. *Chem.* **1975,40,536.** Pryor, *Phys. Org. Chem.* **1978,16,86.**

W. A.; Gojon, G.; Church, D. F. *Ibid.* **1978, 43, 793.

(11) Ito, O.; Matsuda, M. J. Am. Chem. Soc. 1979, 101, 5732, 1815 and**

references cited.

⁽¹²⁾ Wagner, P. J.; Sedon, J. H.; Lindstrom, M. J. J. *Am. Chem.* SOC. **1978,100, 2579.**

⁽¹³⁾ A value of ca. 4×10^5 s⁻¹ for the rate constant for β fission of the radical formed by addition of PhS. to methyl methacrylate has been reported." *B* fission of simple primary or secondary arenethioalkyl radicals would be expected to be more rapid.